Dipolar recoupling in solid state NMR by phase alternating pulse sequences.
نویسندگان
چکیده
We describe some new developments in the methodology of making heteronuclear and homonuclear recoupling experiments in solid state NMR insensitive to rf-inhomogeneity by phase alternating the irradiation on the spin system every rotor period. By incorporating delays of half rotor periods in the pulse sequences, these phase alternating experiments can be made gamma encoded. The proposed methodology is conceptually different from the standard methods of making recoupling experiments robust by the use of ramps and adiabatic pulses in the recoupling periods. We show how the concept of phase alternation can be incorporated in the design of homonuclear recoupling experiments that are both insensitive to chemical shift dispersion and rf-inhomogeneity.
منابع مشابه
Symmetry principles for the design of radiofrequency pulse sequences in the nuclear magnetic resonance of rotating solids
Some new symmetry theorems are presented which simplify the task of designing multiple-pulse radio-frequency pulse sequences in magic-angle-spinning solid-state NMR. The symmetry theorems apply to sequences denoted R N, which n consists of N repetitions of a pulse sequence element R, alternating in phase between the values "pnrN. Each R element ideally rotates the spins by an angle p about the ...
متن کاملEfficient theory of dipolar recoupling in solid-state nuclear magnetic resonance of rotating solids using Floquet-Magnus expansion: application on BABA and C7 radiofrequency pulse sequences.
This article describes the use of an alternative expansion scheme called Floquet-Magnus expansion (FME) to study the dynamics of spin system in solid-state NMR. The main tool used to describe the effect of time-dependent interactions in NMR is the average Hamiltonian theory (AHT). However, some NMR experiments, such as sample rotation and pulse crafting, seem to be more conveniently described u...
متن کاملA study of homonuclear dipolar recoupling pulse sequences in solid-state nuclear magnetic resonance.
Dipolar recoupling pulse sequences are of great importance in magic angle spinning solid-state NMR. Recoupling sequences are used for excitation of double-quantum coherence, which, in turn, is employed in experiments to estimate internuclear distances and molecular torsion angles. Much effort is spent on the design of recoupling sequences that are able to produce double-quantum coherence with h...
متن کاملGenetic algorithms and solid state NMR pulse sequences
The use of genetic algorithms for the optimisation of magic angle spinning NMR pulse sequences is discussed. The discussion uses as an example the optimisation of the C7(2)(1) dipolar recoupling pulse sequence, aiming to achieve improved efficiency for spin systems characterised by large chemical shielding anisotropies and/or small dipolar coupling interactions. The optimised pulse sequence is ...
متن کاملComposite Dipolar Recoupling: Anisotropy Compensated Coherence Transfer in Solid-State NMR
The efficiency of dipole-dipole coupling driven coherence transfer experiments in solid-state NMR spectroscopy of powder samples is limited by dispersion of the orientation of the internuclear vectors relative to the external magnetic field. Here we introduce general design principles and resulting pulse sequences that approach full polarization transfer efficiency for all crystallite orientati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of magnetic resonance
دوره 197 2 شماره
صفحات -
تاریخ انتشار 2009